Atomistic analysis of the field-ion microscopy image of Fe₃Al

Chen Nan-xian

CCAST (World Lab), P.O. Box 8730, Beijing, 100080, China
and Beijing University of Science and Technology, Beijing, 100083, China

Ge Xi-jin, Zhang Wen-qing, and Zhu Feng-wu
Beijing University of Science and Technology, Beijing, 100083, China
(Received 24 February 1997; revised manuscript received 23 February 1998)

A unified lattice inversion method is applied to calculation of interatomic potentials and binding-energy differences between various kinds of surface atoms. Based on these calculated interatomic potentials, the field-ion microscopy images for Fe₃Al are discussed in detail in order to develop the general concept and the evaluation method of selective evaporation for binary ordered alloys.

I. INTRODUCTION

The study of the field-ion microscopy (FIM) shows perfect ring structures in FIM images for pure metals. The size of concentric rings corresponds to the local curvature radius of the specimen’s tip surface. Larger planar density of atoms corresponds to more prominent poles in the FIM images. However, there exists an additional phenomenon in experiment, which is called invisibility. That is, one of the species seems to have disappeared from FIM images for binary ordered alloys. For instance, Co atoms in L₁₀ PtCo and Ni atoms in D₁₅ Ni₃Mo seem to be invisible in the corresponding FIM image. Apparently, the invisibility can be explained by selective evaporation assuming that the applied voltage can cause evaporation of surface atoms from the tip sample. According to previous works, atoms with lower sublimation energy value (in the pure metal state) are invisible since they seem to be evaporated easily, and the remaining atoms, which have higher sublimation energy (see Table I) in their pure metallic state, would preferably remain at the tip surface and construct the stable FIM image. We denote the sublimation energy for pure metal by E^s, then $E^s_{\text{Pt}} < E^s_{\text{Co}}$, and $E^s_{\text{Ni}} < E^s_{\text{Mo}}$. Therefore, the conception in previous works is apparently in good agreement with the experimental results.

II. PREVIOUS WORK ON FIM FOR Fe₃Al

Recently, the FIM image of Fe₃Al has been attracting attention because of its potential applications. Figure I shows the unit cell of a Fe₃Al superlattice. The D₀₃ superlattice can be considered as eight B₂ structures stacked together to allow maximum distance between aluminum atoms. By comparing the sublimation energy values of pure metals Fe and Al, we can assert that Al should be the invisible species. However, in the experiment by Weng et al., perfect rings, which correspond to a fcc structure, exist in the image of Fe₃Al. Given that the Al sublattice has the fcc structure, Weng et al. asserted that Fe is the invisible species in the image of Fe₃Al. Therefore, there is controversy on which kind of atoms is invisible. Note that the first argument is based on two assumptions: (1) In a binary alloy one of the species is invisible, and the other is visible; (2) The atom with lower sublimation energy in its pure metallic state is invisible. Obviously, both assumptions are empirical rather than theoretical. Both have been used to successfully explain the FIM images of Ni₃Mo, Ni₃Al, and PtCo with the assertion that parameters such as sublimation energies for pure bulk metals are transferable to alloy’s surfaces.

However, this explanation does not work for Fe₃Al. First, two types of Fe atoms exist in the D₀₃ type of Fe₃Al, Fe₁ and FeⅡ. The Fe₁ atoms at the ‘‘corners’’ form a simple cubic sublattice. The FeⅡ atoms at the ‘‘centers’’ form a fcc sublattice that is identical with the Al atoms in Fe₃Al. Therefore, we have no reason to conclude from the experiment that the fcc-related rings in the FIM images for Fe₃Al are necessarily attributed to the Al atoms, and not to the FeⅡ atoms, and likewise not to the Al and FeⅡ atoms together. Second, since Al has a lower sublimation energy value compared to Fe, the Al atoms should be more easily evaporated than the Fe atoms. The visible atoms therefore should be FeⅡ instead of Al.

In order to resolve the above controversy, one has to give up conventional premises. It is now necessary to consider the binding-energy difference between various kinds of surface atoms of Fe₃Al, which include Fe₁, FeⅡ, and Al, and perhaps more. The evaluation of interatomic potentials $\Phi_{\text{Fe-Al}}$, $\Phi_{\text{Fe-Co}}$, and $\Phi_{\text{Al-Fe}}$ becomes the key issue. In the present work, a unified formula for inverse lattice problems will be applied to obtain the pair potentials $\Phi_{\text{Al-Al}}$, $\Phi_{\text{Fe-Co}}$, and $\Phi_{\text{Al-Fe}}$ based on ab $initio$ calculated cohesive energy curves. The unified solution of the inverse lattice problems is presented in Sec. III with examples of the fcc, bcc, and D₀₃ structures. Section IV shows the cohesive energy curves based on the ab $initio$ calculation and the universal Rose equation for fcc Al, bcc Fe, and D₀₃ Fe₃Al. In addition,

TABLE I. The sublimation energy values of various pure metals (Ref. 7).

<table>
<thead>
<tr>
<th>Element</th>
<th>Pt</th>
<th>Co</th>
<th>Ni</th>
<th>Mo</th>
<th>Fe</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sublimation energy (eV/atom)</td>
<td>5.84</td>
<td>4.39</td>
<td>4.44</td>
<td>6.82</td>
<td>4.28</td>
<td>3.39</td>
</tr>
</tbody>
</table>
the converted pair potential curves $\Phi_{\text{Al-Al}}$, $\Phi_{\text{Fe-Fe}}$, and $\Phi_{\text{Al-Fe}}$ based on the unified lattice inversion formula are introduced. The above results will be used to evaluate the binding energies of various kinds of atoms on different surfaces of Fe₃Al. In true, the outcome of the evaluation will be compared to experimental data. The conclusion and discussion are in Sec. V.

III. THE INVERSE LATTICE PROBLEMS

The total energy of a Fe₃Al system containing N atoms includes three partial energies

$$U_{\text{tot}}^{\text{Fe₃Al}}(x) = U_{\text{Al-Al}}^{\text{Fe₃Al}}(x) + U_{\text{Fe-Fe}}^{\text{Fe₃Al}}(x) + U_{\text{Al-Fe}}^{\text{Fe₃Al}}(x),$$

where x is the lattice constant of Fe₃Al. The first term in the right-hand side corresponds to the interactions among Al atoms, the second one corresponds to the iron-iron interactions, and the last represents the contribution from the Fe-Al interactions.

A. Expression of inverse lattice problems

Now let us write down the expressions for $U_{\text{Al-Al}}^{\text{Fe₃Al}}(x)$, $U_{\text{Fe-Fe}}^{\text{Fe₃Al}}(x)$, and $U_{\text{Al-Fe}}^{\text{Fe₃Al}}(x)$ in terms of pairwise potentials. $U_{\text{Al-Al}}^{\text{Fe₃Al}}(x)$ is composed of the interatomic interactions between the Al atoms in the Al sublattice in Fe₃Al, that is

$$U_{\text{Al-Al}}^{\text{Fe₃Al}}(x) = \frac{N}{4} \sum_{(m,n,t) \neq (0,0,0)} \Phi_{\text{Al-Al}}(\sqrt{m^2+n^2+l^2}x)$$

$$+ \frac{N}{4} \sum_{(m,n,t) \neq (0,0,0)} \Phi_{\text{Al-Fe}}(\sqrt{m^2+n^2+l^2}x),$$

and $U_{\text{Fe-Fe}}^{\text{Fe₃Al}}(x)$ is composed of the interatomic potentials between the Fe atoms, including Fe¹ and Fe². This can be expressed as

$$U_{\text{Fe-Fe}}^{\text{Fe₃Al}}(x) = \frac{N}{4} \sum_{(m,n,t) \neq (0,0,0)} \Phi_{\text{Fe-Fe}}(\sqrt{(m-1/2)^2+(n-1/2)^2+l^2}x)$$

$$+ \frac{N}{4} \sum_{(m,n,t) \neq (0,0,0)} \Phi_{\text{Fe-Al}}(\sqrt{(m-1/2)^2+(n-1/2)^2+(l-1/2)^2}x).$$

The last partial energy is composed of the interactions between the Al atoms and the Fe atoms, that is,

$$U_{\text{Al-Fe}}^{\text{Fe₃Al}}(x) = \frac{N}{4} \sum_{m,n,t} \Phi_{\text{Fe-Al}}(\sqrt{(m-1/2)^2+(n-1/2)^2+(l-1/2)^2}x)$$

$$+ \frac{3N}{4} \sum_{m,n,t} \Phi_{\text{Fe-Al}}(\sqrt{m^2+n^2+(l-1/2)^2}x).$$

The cohesive energy can be obtained by either \textit{ab initio} calculation or experimental data combined with the application of universal Rose equation.\(^{13}\) In the next step, in order to determine the pairwise potentials $\Phi_{\text{Al-Al}}(x), \Phi_{\text{Fe-Fe}}(x)$, and $\Phi_{\text{Fe-Al}}(x)$ based on the cohesive energy or the partial cohesive energy, we need to solve the inverse lattice problems.

B. Carlsson-Gelatt-Ehrenreich technique (Ref. 16)

For most applications the pair potential approximation is considered to have spherical symmetry. And in various situations either the Lennard-Jones form is used for Van der Waals solids,\(^{14}\) or the different modified Morse-type potentials are used for metals\(^{15}\) extensively. The simplicity of pair
potentials has made it possible to study the mechanical and
defect properties of metals, on the other hand, to study the
phase diagram of binary alloys, and the para- to antiferro-
magnetic transition problem. Most previous works only treat
the nearest-neighbor interactions. Carlsson et al.16 used \textit{ab initio} band-structure calculation to obtain a pair potential
with long-range interactions.

Band-structure calculation can produce the total energy,
\(E_{\text{tot}}(r),\) as a function of lattice constant \(r.\) In general, the
cohesive energy \(E(r) = E_{\text{tot}}(r) - E_{\text{tot}}(\infty)\) for each atom in a
three-dimensional crystal lattice can be expressed as a sum of
interatomic pair potentials \(\Phi(x)\) such that

\[
E(r) = \frac{1}{2} \sum_{\mathbf{R} \neq 0} \Phi(\mathbf{R}),
\]

where \(r\) is the lattice constant, \(\mathbf{R}\) is the lattice vector. For
crude deduction, let us assume that each term at a fixed
value of \(S_p r\) occurs with a given weight \(W_p\) in the sum (5).
These pairs of values \(\{S_p, W_p\}\) are specific to a given lattice
structure, and can be easily generalized for different lattices
by computer. Thus we may rewrite Eq. (5) as

\[
E(r) = \sum_{p=1}^{\infty} W_p \Phi(S_p r).
\]

In fact, denoting that \(E(x) = U(x)/N,\) all the Eqs. (2)–(4)
will take the same form as Eq. (6). Now define an operator \(\mathcal{A}\)
such that

\[
E(r) = \mathcal{A}\Phi(r) = \left[\sum_{p=1}^{\infty} \mathcal{A}_p \right] \Phi(r),
\]

where the operator \(\mathcal{A}_p,\) is defined by

\[
\mathcal{A}_p f(r) = W_p f(S_p r),
\]

in which \(f(r)\) is an arbitrary function. The formal inversion
is then

\[
\Phi(r) = \mathcal{A}^{-1} E(r).
\]

Carlsson et al. define \(\mathcal{A}^{-1}\) as

\[
\mathcal{A}^{-1} = \left(1 + \mathcal{A}_1^{-1} \sum_{p=2}^{\infty} \mathcal{A}_p \right)^{-1} \mathcal{A}_1^{-1},
\]

so that it is given as

\[
\Phi(r) = \left(\frac{1}{W_1} \right) E \left(\frac{r}{S_1} \right) - \sum_{p=2}^{\infty} \left(\frac{W_p}{W_1} \right) E \left(\frac{S_p r}{S_1} \right)
+ \sum_{p=2}^{\infty} \left(\frac{W_2}{W_p} \right) E \left(\frac{S_p S_q r}{S_1^2} \right) - \ldots
\]

The right-hand side of Eq. (11) consists of infinite sums, each of them has infinite terms. The convergence of this
series is slow, and is analyzed with difficulty. Thus we shall
illustrate an alternative method based on a generalized Möbius transform as follows.

C. Generalized Chen-Möbius inversion formula (Ref. 12)

For convenience, we replace the lattice constant \(r\) by
the nearest-neighbor distance \(x,\) correspondingly, \(\{S_p\}\) by \(\{b_0(n)\},\) and \(\{W_p\}\) by \(\{r_0(n)\},\) such that

\[
E(x) = \sum_{n=1}^{\infty} r_0(n) \Phi(b_0(n)x),
\]

where \(b_0(n)\) in a monotonically increasing series represents
the distance between the origin on which the reference atom
is located and the \(n\)th set of lattice points, \(r_0(n)\) is the number
of the \(n\)th set of lattice points. For example, \(b_0(1) = 1\)
corresponds to the nearest-neighbor distance. The inverse lattice
problem is to determine \(\Phi(x)\) from the fitting curve of
\(E(x),\) which can be obtained from the \textit{ab initio} calculation.
The trick here is to extend the series \(\{b_0(n)\}\) to \(\{b(n)\}\) to
achieve multiplicative closedness. Thus, for any \(m\) and \(n,\) there exist \(k\) such that

\[
b(k) = b(m)b(n).
\]

In other words, \(\{b_0(n)\}\) can always be replaced by a multi-
plcative semigroup \(\{b(n)\}.\) Therefore, Eq. (12) is equivalent to
the following:

\[
E(x) = \sum_{n=1}^{\infty} r(n) \Phi(b(n)x),
\]

in which

\[
r(n) = \begin{cases} r_0(b_0^{-1}(b(n))), & \text{if } b(n) \in \{b_0(n)\}, \\ 0, & \text{if } b(n) \notin \{b_0(n)\} \end{cases}.
\]

The lattice point shell is called virtual when \(r(n) = 0.\)

Then the solution to Eq. (14) is given by

\[
\Phi(x) = 2 \sum_{n=1}^{\infty} I(n) E(b(n)x),
\]

in which the inversion coefficient or the generalized Möbius
function \(I(n)\) is given by

\[
\sum_{b(n)\mid b(k)} I(n) \delta^{-1} \left(\frac{b(k)}{b(n)} \right) = \delta_{k1}.
\]

This indicates that \(I(n)\) and \(r(n)\) are the modified Dirichlet
inverse of each other, which is a generalization of common
Dirichlet inverse in number theory. The following proves
that Eq. (16) is the solution to Eq. (14), as well as to Eq.
(12):

\[
\sum_{n=1}^{\infty} I(n) E(b(n)x) = \sum_{k=1}^{\infty} \left(\sum_{b(n)\mid b(k)} I(n) \delta^{-1} \left(\frac{b(k)}{b(n)} \right) \Phi(b(k)x) \right)
= \sum_{k=1}^{\infty} \delta_{k1} \Phi(b(k)x) = \Phi(b(1)x) = \Phi(x).
\]

In the case of \([b(n)]^2\) not being integers, the least common
multiple of all the denominators can be used in the recursive
procedure. The solution (16) with Eq. (17) can be applied to any lattice structure of interest in condensed-matter physics or statistical physics. Several examples relevant to this work are provided as follows.

From a mathematical point of view, the general expression \(r_0(n) \) of the number of the crystallographic lattice points on a spherical surface is unsolved, but this can be obtained rigorously by a very simple computer program up to the shell as large as required. After this step, a generalized Dirichlet inverse can be introduced. And it is shown that once the technique in number theory is applied, the problem can be solved in an unexpectedly concise manner.

D. Inversion formula for a fcc structure (Ref. 12)

The inverse problem can be expressed as

\[
E(x) = \frac{1}{2} \sum_{i,j,k } \Phi(\sqrt{2(i^2+j^2+k^2)x})
\]

\[
+ \frac{3}{2} \sum_{i,j,k } \Phi \left(\sqrt{2 \left(i^2 + \frac{1}{2} \right)} \sqrt{2 \left(j^2 + \frac{1}{2} \right)} \sqrt{2 \left(k^2 + \frac{1}{2} \right)} x \right)
\]

\[
- \sum_{n=1} \Phi(b_0(n)x).
\]

The corresponding solution is given as

\[
\Phi(x) = \frac{1}{12} E(x) - \frac{1}{24} E(\sqrt{2}x) - \frac{1}{6} E(\sqrt{3}x) - \frac{1}{16} E(2x)
\]

\[
- \frac{1}{6} E(\sqrt{5}x) + \cdots.
\]

In the present work, we use this fcc lattice inversion formula to obtain the pairwise potential \(\Phi_{Al-Al}(x) \) based on the cohesive energy curve for the fcc metal Al.

E. Inversion formula for a bcc structure (Ref. 12)

For obtaining the pair potential \(\Phi_{Fe-Fe}(x) \) from the cohesive energy curve for iron with bcc structure, we need to solve the equation of the inversion problem of a bcc lattice, which can be expressed as

\[
E(x) = \frac{1}{2} \sum_{n=1}^{\infty} \Phi(b(n)x)
\]

\[
= \frac{1}{2} \sum_{(l,m,n)=(0,0,0)} \Phi \left(\frac{4}{3} \{i^2+j^2+k^2\} x \right)
\]

\[
+ \Phi \left(\frac{4}{3} \left(i^2 + \frac{1}{2} \right) \left(j^2 + \frac{1}{2} \right) \left(k^2 + \frac{1}{2} \right) x \right) \right). \tag{20}
\]

The corresponding solution is given as follows:

\[
\Phi(x) = \frac{1}{4} E(x) - \frac{1}{16} E \left(\frac{4}{3} x \right) + \frac{9}{64} E \left(\frac{4}{3} x \right)
\]

\[
- \frac{27}{256} E \left(\frac{64}{27} x \right) + \cdots. \tag{21}
\]

F. Inversion formula for a DO₃ structure

The inverse lattice problem for a DO₃ structure or the relation between the total energy and partial energies can be expressed as

\[
E_{Al-Fe}(x) = \frac{1}{N} \left[U_{total}^{Fe-Al}(x) - U_{Al-Al}(x) - U_{Fe-Fe}(x) \right]. \tag{22}
\]

The relation between the partially cohesive energy \(E_{Al-Fe}(x) \) and pairwise potential \(\Phi_{Al-Fe}(x) \) is [\(\Phi_{Al-Fe}(x) \)]

\[
E_{Al-Fe}(x) = 8 \Phi_{Al-Fe}(x) + 6 \Phi_{Al-Fe} \left(\frac{4}{3} x \right)
\]

\[
+ 24 \Phi_{Al-Fe} \left(\frac{20}{3} x \right) + 24 \Phi_{Al-Fe} \left(\frac{20}{3} x \right) + \cdots. \tag{23}
\]

The corresponding solution is given as

\[
\Phi_{Al-Fe}(x) = \frac{1}{8} E_{Al-Fe}(x) - \frac{3}{32} E_{Al-Fe} \left(\frac{4}{3} x \right)
\]

\[
+ \frac{9}{128} E_{Al-Fe} \left(\frac{4}{3} x \right) - \frac{27}{512} E_{Al-Fe} \left(\frac{8}{3} \right)
\]

\[
+ \frac{81}{2048} E_{Al-Fe} \left(\frac{16}{9} x \right) \cdots. \tag{24}
\]

IV. CALCULATION AND EXPLANATION OF FIM IMAGE OF Fe₇Al

A. Energy analysis

Let us consider a system of Fe₇Al, which consists of N atoms. The total energy of this system can be expressed as the sum of three parts:

\[
U^{Fe-Al}_{tot} = U_{Fe-Al} + U_{Al-Al} + U_{Al-Fe}.
\]

Step 1: To evaluate \(U^{Fe-Al}_{tot}(x) \) based on \(\Phi_{Fe-Al}(x) \). The latter can be converted from \(E^{coh}_{Fe-Al}(x) \) in terms of the unified lattice inversion formula for a body-centered cubic structure;

Step 2: To evaluate \(U^{Fe-Al}_{tot}(x) \) based on \(\Phi_{Fe-Al}(x) \). The latter can be converted from \(E^{coh}_{Fe-Al}(x) \) in terms of the unified lattice inversion formula for a face-centered-cubic structure;

Step 3: To evaluate \(U_{Al-Fe} \) from \(U^{Fe-Al}_{tot}(x) - U^{Fe-Al}_{tot}(x) - U_{Al-Fe} \);

Step 4: To convert \(U_{Al-Fe} \) into \(\Phi_{Al-Fe} \) based on the unified lattice inversion formula for a shifted simple cubic structure;

Step 5: To evaluate the cohesive energies \(E^{surf}_{Al} \) and \(E^{surf}_{Fe} \) of surface atoms for surfaces with different indices.

B. The cohesive energy curves of Al, Fe, and Fe₇Al

A few parameters are needed to establish the cohesive energy curves based on Rose’s universal equation of states as
where $a' = \beta (x - x_0)$, E_0 is the sublimation energy, x_0 is the equilibrium nearest-neighbor distance, and $\beta = (9 B \Omega_0 / x_0^3 E_0)^{1/2}$, in which B is the bulk modulus and Ω_0 is the equilibrium atomic volume. Therefore, for each cohesive energy curve three parameters x_0, E_0, and B are required. For most pure metals, the experimental data can be found easily, which are taken for the present work. For the ordered alloys, part of experimental data are hardly obtained, which will be calculated from ab initio linear-argumented plane-wave calculation. For example, the bulk modulus of Fe$_3$Al is difficult to measure due to its brittleness, thus the calculated data is taken. These equilibrium parameters are listed in Table II.

C. The interatomic potentials Φ_{Al-Al}, Φ_{Fe-Fe}, and Φ_{Fe-Al}

Now the lattice inversion formulas are used in order to obtain the interatomic potentials Φ_{Al-Al}, Φ_{Fe-Fe}, and Φ_{Fe-Al}, the results are shown in Figs. 2 and 3.

D. The calculation of evaporating energies

Based on the interatomic potentials Φ_{Al-Al}, Φ_{Fe-Fe}, and Φ_{Fe-Al}, we can evaluate the binding energies or evaporating energies of various surface atoms of Fe$_3$Al (see Table III). The calculated evaporating energies are listed in eV. Only surfaces with indices (100), (110) or (111) have two or three kinds of Fe atoms. For different surfaces the invisible atoms are different. For instance, FeI and FeII are invisible on surfaces (100) and (111), and FeI on surface (110). Therefore, FeI atoms are always invisible and FeII are sometimes invisible. The condition is that the applied voltage arrives at a certain value such that evaporation occurs, and the FIM images are attributed to the remaining atoms. The probabilities for competitive evaporation of different kinds of surface atoms can be evaluated by the Boltzmann distribution, which is temperature dependent. The smaller the probability for evaporation, the longer the duration of the stationary FIM image obtained in experiment. Note that there are two kinds of surfaces that consist of the FeI atoms with indentical index (111) as shown in Fig. 4. This is why the binding energy of surface atoms FeI takes two values as in Table III.

V. CONCLUSION AND DISCUSSION

As long as selective evaporation dominates, the experimental results agree well with the atomistic simulation of the FIM image formation based on the approximately universal Rose cohesive energy curve with ab initio calculated or experimental parameters and the universal lattice inversion method within the pair-potential approximation. In fact, the present method has been proven to work well not only for Fe$_3$Al9,10 but also for Ni$_4$Mo, PtCo, PtCo$_3$, Ni$_3$Fe, and Ni$_3$Al. According to the conventional selective evaporation rule, we will obtain the wrong conclusion for most of these ordered alloys.17

According to convention, both selective ionization (elec-

\begin{table}[h]
\centering
\caption{The ab initio calculated parameters for related metals.}
\label{tab:abinitio_params}
\begin{tabular}{llll}
\hline
Metal & Structure & Sublimation energy (eV) & Lattice constant a_0 (Å) & Bulk modulus $(10^{12}$ dyn/cm2) \\
\hline
Al & fcc & 3.39 (exp) & 4.05 (exp) & 0.722 (exp) \\
Fe & bcc & 4.87 (exp) & 2.87 (exp) & 1.683 (exp) \\
Fe$_3$Al & DO$_3$ & 4.40(cal) & 5.57(cal) & 2.29 (exp) \\
& & 4.22(exp) & 5.792(exp) & \\
\hline
\end{tabular}
\end{table}
TABLE III. Binding energy of various surface atoms of Fe₃Al.

<table>
<thead>
<tr>
<th></th>
<th>(100)</th>
<th>(110)</th>
<th>(111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe¹</td>
<td>5.319</td>
<td>5.381</td>
<td>4.317</td>
</tr>
<tr>
<td>Fe²</td>
<td>5.322</td>
<td>5.618</td>
<td>4.595</td>
</tr>
<tr>
<td>Al</td>
<td>5.822</td>
<td>5.723</td>
<td>5.145</td>
</tr>
</tbody>
</table>

tronic charge transfer) and selective evaporation are possible methods to explain the selective invisibility for different kinds of atoms in the stable FIM images of a binary ordered alloy. When the applied voltage is not high enough to cause selective evaporation, the electron transfer between different kinds of atoms will dominate the FIM images. Weng et al.⁹ compare the work function values of component atoms of Fe₃Al in its pure metallic state. In fact, the work function is a characteristic of metal such as iron or aluminum, not that for atoms. In our case, the experiment was done in the condition that the applied voltage was high enough to cause selective evaporation at first, then we decreased the voltage for a stable FIM image. If we use the conventional rule of selective evaporation, the Al atoms would evaporate easily and it would be invisible, and this is contrary to experiment (see Table I).

From a theoretical point of view, the many-body effect should be considered for a general situation. Also, the surface relaxation might be important. These will be for further study.

Finally we like to discuss the uncertainties in the approximations we used. First, the pair potential model is only a popular and very simple approximation of interatomic approximation, especially for the surface atoms. Second, even the inversion procedure is suitable for any kind of cohesive energy curves, the curve can be obtained in different ways:

(a) direct ab initio calculation,
(b) Rose approximation based on ab initio calculated E_0, a_0, and B,
(c) Morse approximation based on ab initio calculated E_0, a_0, and B,
(d) Rose approximation based on experimental E_0, a_0, and B,
(e) Morse approximation based on experimental E_0, a_0, and B,
(f) others.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Professor Z. G. Liu, Q. J. Gao, and Dr. J. Weng for helpful discussions and encouragement. This work was supported partly by National Foundation of Natural Science in China, and partly by National Advanced Materials Committee of China.

17. N.X. Chen and X.J. Ge (unpublished).